LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ excitation of BODIPY fluorophores by 89Zr-generated Cerenkov luminescence.

Photo by brechtcorbeel from unsplash

Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging optical imaging technology that affords high signal-to-noise images by utilising radionuclide-generated Cerenkov luminescence to excite fluorescent probes. BODIPY dyes offer attractive properties… Click to show full abstract

Secondary Cerenkov-induced fluorescence imaging (SCIFI) is an emerging optical imaging technology that affords high signal-to-noise images by utilising radionuclide-generated Cerenkov luminescence to excite fluorescent probes. BODIPY dyes offer attractive properties for SCIFI, including high quantum yields and photochemical stability, yet their utility in this application in combination with clinically relevant β+-emitting radioisotopes remains largely unexplored. In this report, the fluorescence properties of three meso-substituted BODIPY analogues have been assessed in combination with the positron emitter zirconium-89. Most notably, SCIFI data acquired over 7 days shows the BODIPY scaffold remain largely inert to radiolysis, indicating the promising utility of this fluorophore class in SCIFI applications.

Keywords: cerenkov luminescence; generated cerenkov; excitation bodipy; situ excitation

Journal Title: Chemical communications
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.