The structure-guided engineering of a BVMO from Rhodococcus aetherivorans (RaBVMO) was performed for its asymmetric sulfoxidation activity toward omeprazole sulfide. Based on the structural model of RaBVMO, key residues that… Click to show full abstract
The structure-guided engineering of a BVMO from Rhodococcus aetherivorans (RaBVMO) was performed for its asymmetric sulfoxidation activity toward omeprazole sulfide. Based on the structural model of RaBVMO, key residues that line the substrate entrance tunnel and the binding pocket were identified, and variants were interrogated with sulfides of varied sizes. The best mutant MT2 (F442A/R337P) was obtained with a specific activity of 2.54 U g-1 and excellent enantioselectivity (≥99%, S) toward omeprazole sulfide, while wild-type RaBVMO exhibited no activity. Further structural analysis reveals that both mutations, F442A and R337P, could render an expanded substrate tunnel and an enlarged substrate binding pocket to enable easier access to the catalytic center for omeprazole sulfide. This work provides valuable guidance for engineering-related BVMOs for improved activity and enantio-preference toward bulky substrates.
               
Click one of the above tabs to view related content.