LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Carbon dioxide capture with zeotype materials.

Photo by luddelorentz from unsplash

The accumulation of carbon dioxide (CO2) in the atmosphere has been recognized as one of the primary factors attributed to global warming. Various strategies have been proposed to mitigate the… Click to show full abstract

The accumulation of carbon dioxide (CO2) in the atmosphere has been recognized as one of the primary factors attributed to global warming. Various strategies have been proposed to mitigate the amount of atmospheric CO2 such as its separation from emission streams with storage or utilization in fuels and chemicals. Zeolite-based materials (zeotype materials), a class of microporous solids with: (i) structural features of high surface area, chemical tunability and high stability, and (ii) a long history of global scale industrial use, have been extensively investigated for CO2 capture. In this review, a comprehensive summary and discussion of the progress in the design and use of zeotype materials, e.g., cation and amine modifications, composites and templated carbons, for the capture of CO2 is presented. The CO2 adsorption mechanisms in these materials are described, and the factors that determine their performance are discussed. The application of zeotype materials for CO2 capture under conditions such as post-combustion, indoor air cleaning and direct air capture are presented. Further, the mechanisms of water-zeolites interaction as well as their impacts on CO2 adsorption performance are discussed. The review closes with a brief presentation on the challenges and opportunities for future research in the field.

Keywords: zeotype materials; carbon dioxide; dioxide capture; capture; co2

Journal Title: Chemical Society reviews
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.