LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

(P,C)-cyclometalated complexes derived from naphthyl phosphines: versatile and powerful tools in organometallic chemistry.

Photo by trnavskauni from unsplash

The chemistry of (P,C)-cyclometalated complexes derived from naphthyl phosphines [Np(P,C)M] is presented and analysed in this review. The three main synthetic approaches, namely P-chelation assisted C-H activation, oxidative addition and… Click to show full abstract

The chemistry of (P,C)-cyclometalated complexes derived from naphthyl phosphines [Np(P,C)M] is presented and analysed in this review. The three main synthetic approaches, namely P-chelation assisted C-H activation, oxidative addition and transmetalation, are described and compared. If a naphthyl framework inherently predisposes a phosphorus atom and transition metal to interact, a rigid metallacycle may induce some strain and distortion, as apparent from the survey of the single-crystal X-ray diffraction structures deposited in the Cambridge Structural Database (77 entries with metals from groups 7 to 11). Generally, the Np(P,C)-cyclometalation imparts high thermal and chemical robustness to the complexes, and a variety of stoichiometric reactions have been reported. In most cases, the metalacyclic structure is retained, but protodecyclometalation and ring-expansion have been sparingly observed. [Np(P,C)M] complexes have also proved to be competent and actually competitive catalysts in several transformations, and they act as key intermediates in some others. In addition, interesting phosphorescence properties have been occasionally pointed out.

Keywords: naphthyl phosphines; chemistry cyclometalated; chemistry; cyclometalated complexes; complexes derived; derived naphthyl

Journal Title: Chemical Society reviews
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.