LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Porous MoS2 nanosheets for the fast decomposition of energetic compounds.

Photo by nhoizey from unsplash

The energy release performance of energetic compounds like 3-nitro-1,2,4-trizole-5-one (NTO) and 5,5'-bistetrazole-1,1'-diolate (TKX-50) are indispensable in propellent formulations. However, thermal decomposition behavior is impeded by unfavorable catalysts. Presently, ultrathin porous… Click to show full abstract

The energy release performance of energetic compounds like 3-nitro-1,2,4-trizole-5-one (NTO) and 5,5'-bistetrazole-1,1'-diolate (TKX-50) are indispensable in propellent formulations. However, thermal decomposition behavior is impeded by unfavorable catalysts. Presently, ultrathin porous MoS2 nanosheets (pMoS2) are considered as high-performance catalysts for NTO and TKX-50 decomposition. The pMoS2 in 5 wt% content could decrease the decomposition temperature of NTO and TKX-50 by 13.5 °C and 37.1 °C, respectively. Furthermore, the exothermic heat-release for pMoS2@NTO and pMoS2@TKX-50 were increased almost by a factor of two. The porous structure combined with large specific area of pMoS2 could mostly trigger the catalytic effect towards energetic compound decomposition. Additionally, the as-obtained MoS2 endowed advances in safety performance of NTO and TKX-50, with remarkably reduced impact and friction sensitivity. The as-proposed strategy may stimulate a different perspective towards the fast decomposition of energetic materials in propellants.

Keywords: decomposition; fast decomposition; porous mos2; energetic compounds; mos2 nanosheets; decomposition energetic

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.