LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co4N-WNx composite for efficient piezocatalytic hydrogen evolution.

Photo by sickhews from unsplash

A dual-phase transition metal nitride (TMN) based Co4N-WNx system has been fabricated using nitridation of CoWO4. The interface between centrosymmetric Co4N and non-centrosymmetric WNx promotes charge carrier separation. This system… Click to show full abstract

A dual-phase transition metal nitride (TMN) based Co4N-WNx system has been fabricated using nitridation of CoWO4. The interface between centrosymmetric Co4N and non-centrosymmetric WNx promotes charge carrier separation. This system also shows piezoelectric behavior. The piezoelectric property has been proved using piezoelectric force microscopy (PFM) measurements. In addition, modulating the non-centrosymmetric structure of Co4N-WNx allows a hydrogen production rate of about 262.7 μmol g-1 h-1 in pure water. We also show that the piezocatalytic hydrogen evolution efficiency is satisfactory. Co4N-WNx can also help achieve simultaneous piezocatalytic hydrogen production and RhB degradation. This work provides a novel strategy for designing efficient piezocatalytic materials.

Keywords: piezocatalytic hydrogen; efficient piezocatalytic; co4n; co4n wnx; hydrogen evolution

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.