LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Isolation of monomeric copper(II) phenolate selenoether complexes using chelating ortho-bisphenylselenide-phenolate ligands and their electrocatalytic hydrogen gas evolution activity.

Photo by joelfilip from unsplash

A series of novel copper(II) phenolate selenoether complexes have been synthesized and structurally characterized for the first time from copper(I) phenanthroline and various substituted ortho-bisphenylselenide-phenol chelating ligands. The synthesized complexes… Click to show full abstract

A series of novel copper(II) phenolate selenoether complexes have been synthesized and structurally characterized for the first time from copper(I) phenanthroline and various substituted ortho-bisphenylselenide-phenol chelating ligands. The synthesized complexes exhibit Jahn-Teller distortion in their geometry and varied from distorted square planar to distorted octahedral by varying the substituent in the bis-selenophenolate ligand. The synthesized complexes electrocatalyze the hydrogen evolution reaction (HER) with a faradaic efficiency of up to 89%, and it was observed that the distorted square pyramidal geometry is the optimum geometry for the maximum efficiency of these copper complexes.

Keywords: phenolate selenoether; phenolate; geometry; copper phenolate; selenoether complexes

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.