LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fabrication of nanocomposite MoC-Mo2C@C/Cd0.5Zn0.5S: promoted electron migration and improved photocatalytic hydrogen evolution.

Photo by maximalfocus from unsplash

In this work, we successfully prepared composites of carbon-modified in-phase MoC-Mo2C (MoC-Mo2C@C, MMC) nanosheets with Cd0.5Zn0.5S (ZCS) nanorods. The loading of MMC nanosheets significantly improved the hydrogen production rate of… Click to show full abstract

In this work, we successfully prepared composites of carbon-modified in-phase MoC-Mo2C (MoC-Mo2C@C, MMC) nanosheets with Cd0.5Zn0.5S (ZCS) nanorods. The loading of MMC nanosheets significantly improved the hydrogen production rate of ZCS nanorods. The results showed that the photocatalytic hydrogen production rate of ZCS is the highest when MMC nanosheets are 1 wt% of ZCS nanorods (1-MMC/ZCS), reaching 68.8 mmol h-1 g-1, which is 7.7 times that of pure ZCS nanorods. The 1-MMC/ZCS photocatalyst was measured with Na2S/Na2SO3 as a hole sacrifice reagent under irradiation with 420 nm monochromatic light, and the quantum efficiency of 1-MMC/ZCS was 32.9%. The carbon layer can promote the rapid transfer of photogenerated electrons, and in-phase Mo2C-MoC as the active site can synergistically improve the photocatalytic hydrogen production rate of ZCS. Most Mo2C-based materials are still used in the field of electrocatalysis. This study provides a new idea for exploring new molybdenum-based co-catalyst materials in the field of visible light catalytic hydrogen production.

Keywords: mo2c; moc mo2c; hydrogen; zcs; cd0 5zn0; photocatalytic hydrogen

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.