LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

5d → 4f transition of a lanthanide-activated MGa2S4 (M = Ca, Sr) semiconductor for mechanical-to-light energy conversion mediated by structural distortion.

Photo from wikipedia

Materials exhibiting mechanoluminescence (ML) are a class of smart materials capable of mechanical-to-light energy conversion. Thus, ML materials have been widely used in various electronic applications such as smart sensors,… Click to show full abstract

Materials exhibiting mechanoluminescence (ML) are a class of smart materials capable of mechanical-to-light energy conversion. Thus, ML materials have been widely used in various electronic applications such as smart sensors, security systems, human-machine interfaces, and energy harvesting systems. Herein, we report a centrosymmetric ML semiconductor host material family MGa2S4 (M = Ca, Sr), which features in-layered structures constructed with unique distorted bi-tetrahedral [Ga2S2S4/2] lattice units. It exhibited similar structural characteristics to the well-known ML semiconductor host ZnS. Remarkably, the lanthanide ions of 5d → 4f transition-activated hosts showed sensitive and high ML luminance under natural lighting upon mechanical stimulation; thus, an efficient mechanical-to-light energy conversion of a self-powered display was achieved. Moreover, because of structural distortion and strain-gradient-induced electrical polarization in the ML host material upon mechanical stimulation, a ML mechanism based on the synergy effect between local electronic polarization and flexoelectricity was proposed. This study facilitates a deeper understanding of the relationship between the structure and underlying ML, and promotes further development of ML-material-based products and technologies.

Keywords: light energy; energy conversion; mechanical light; energy

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.