LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient and selective removal of Pb2+ from aqueous solution by using an O- functionalized metal-organic framework.

Photo by ferhadd from unsplash

Lead (Pb) is one of the most widespread and highly toxic heavy metals in the environment. The design and synthesis of adsorbent materials for the selective and efficient removal of… Click to show full abstract

Lead (Pb) is one of the most widespread and highly toxic heavy metals in the environment. The design and synthesis of adsorbent materials for the selective and efficient removal of Pb2+ from aqueous solution has received much attention. Herein, the ligand 4,4'-azoxydibenzoic acid with the O- group was elaborately selected to construct a novel Pr-based MOF for Pb2+ removal. The as-prepared MOF adsorbents with high stability exhibited ultra-high selectivity for Pb2+, even in the presence of various highly concentrated competitive ions (with the ratios from 1 : 5 to 1 : 50). Also, a high uptake capacity (560.26 mg g-1) can be achieved for the MOF material, due to the availability of sufficient adsorption sites. The strong electrostatic attraction and coordination interaction between the numerous active O- sites on MOF adsorbents and Pb2+ can account for the good adsorption performance for Pb2+, which was systematically verified by zeta potential, FT-IR and XPS studies.

Keywords: removal pb2; removal; pb2 aqueous; efficient selective; aqueous solution

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.