LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strong magnetic exchange coupling in a radical-bridged trinuclear nickel complex.

Photo by theshubhamdhage from unsplash

Reaction of 2,3,6,7,10,11-hexaaminotriphenylene hexahydrochloride (HATP·6HCl) and (TpPhNi)Cl (TpPh = tris(3,5-diphenyl-1-pyrazolyl)borate) produces the radical-bridged trinickel complex [(TpPhNi)3(HITP)] (HITP3-˙ = 2,3,6,7,10,11-hexaiminotriphenylene). Magnetic measurements and broken-symmetry density functional theory calculations reveal strong exchange… Click to show full abstract

Reaction of 2,3,6,7,10,11-hexaaminotriphenylene hexahydrochloride (HATP·6HCl) and (TpPhNi)Cl (TpPh = tris(3,5-diphenyl-1-pyrazolyl)borate) produces the radical-bridged trinickel complex [(TpPhNi)3(HITP)] (HITP3-˙ = 2,3,6,7,10,11-hexaiminotriphenylene). Magnetic measurements and broken-symmetry density functional theory calculations reveal strong exchange coupling persisting at room temperature between HITP3-˙ and two of the three Ni2+ centers, a rare example of strong radical-mediated magnetic coupling in multimetallic complexes. These results demonstrate the potential of radical-bearing tritopic HITP ligands as building blocks for extended molecule-based magnetic materials.

Keywords: strong magnetic; coupling radical; magnetic exchange; exchange coupling; radical bridged

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.