Biomimetic di- or multimetallic complexes featuring NxHy species in a sulfur-rich coordination sphere have attracted considerable attention in modelling the possible scenarios of biological nitrogen fixation by nitrogenases. Although the… Click to show full abstract
Biomimetic di- or multimetallic complexes featuring NxHy species in a sulfur-rich coordination sphere have attracted considerable attention in modelling the possible scenarios of biological nitrogen fixation by nitrogenases. Although the active site of nitrogenases is a complex heterometallic sulfur cluster, the feasibility of NxHy species on different metal sites is scarcely investigated. Herein, we report an unprecedented thiolate-bridged ruthenium-molybdenum complex featuring bridging amido and terminal nitrido ligands obtained by cleaving the N-N and N-H bonds of hydrazine. Remarkably, this RuMo complex is also capable of catalyzing the reduction of hydrazine to ammonia. Overall, this rare activation pattern of hydrazine on a thiolate-bridged RuMo platform provides new insight into the heterometallic cooperativity in nitrogenase.
Click one of the above tabs to view related content.