Visible-light driven photoreactions using transition metal complexes as catalysts are currently a research hotspot in developing environmentally friendly sustainable processes. To develop a potential copper-based photocatalyst, a binuclear Cu(II) complex… Click to show full abstract
Visible-light driven photoreactions using transition metal complexes as catalysts are currently a research hotspot in developing environmentally friendly sustainable processes. To develop a potential copper-based photocatalyst, a binuclear Cu(II) complex has been synthesized using a Mannich base ligand viz. 2,4-dichloro-6-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol (H2L). The photocatalyst has been characterized using ESI-MS and single crystal X-ray diffraction. Under the irradiation of visible light, the catalyst can catalyze hydrogen auto-transfer in N-alkylated amine formation and benzyl alcohol oxidation reactions with excellent conversion. A plausible mechanistic pathway for catalytic reactions has been explored through ESI-MS spectrometric, UV-Vis spectroscopic and computational studies.
               
Click one of the above tabs to view related content.