LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tailoring spin waves in 2D transition metal phosphorus trichalcogenides via atomic-layer substitution.

Photo by viazavier from unsplash

The family of two-dimensional (2D) van der Waals transition metal phosphorus trichalcogenides has received renewed interest due to their intrinsic 2D antiferromagnetism, which proves them as unprecedented and highly tunable… Click to show full abstract

The family of two-dimensional (2D) van der Waals transition metal phosphorus trichalcogenides has received renewed interest due to their intrinsic 2D antiferromagnetism, which proves them as unprecedented and highly tunable building blocks for spintronics and magnonics at the single-layer limit. Herein, motivated by the exciting potential of atomic-substitution demonstrated by Janus transition metal dichalcogenides, we investigated the crystal, electronic and magnetic structures of selenized Janus monolayers based on MnPS3 and NiPS3 from first-principles. In addition, we calculated the magnon dispersion and performed real-time real-space atomistic dynamic simulations to explore the propagation of spin waves in MnPS3, NiPS3, MnPS1.5Se1.5 and NiPS1.5Se1.5. Our calculations predict a drastic enhancement of magnetic anisotropy and the emergence of large Dzyaloshinskii-Moriya interactions, which arise from the induced broken inversion symmetry in the 2D Janus layers. These results pave the way for the development of Janus 2D transition metal phosphorus trichalcogenides and highlight their potential for magnonic applications.

Keywords: transition metal; transition; phosphorus trichalcogenides; metal phosphorus

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.