LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heterometal doping on nickel selenide corrugations for solar-assisted electrocatalytic hydrogen evolution.

Photo by miracleday from unsplash

Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique… Click to show full abstract

Since nickel exhibits good binding energy and is inexpensive, it is widely applied as a hydrogen evolution reaction (HER) electrocatalyst. Among all Ni-based materials, nickel selenide (NiSe) shows a unique electronic structure as a semiconductor with good electrocatalytic activity. Herein, we prepare Co-doped NiSe (Ni1-xCoxSe) with a structure of uniform corrugations by one-step chemical vapor deposition. For comparison, Fe-doped NiSe (Ni1-xFexSe) and NiSe are also prepared using the same method. In alkaline electrolyte, Ni1-xCoxSe shows great HER performance in terms of low overpotential (93 mV@10 mA cm-2 and 140 mV@50 mA cm-2) and long-term stability. Moreover, with the assistance of solar energy, the overpotential needed for Ni1-xCoxSe is reduced, making Ni1-xCoxSe better than most reported NiSe-based HER catalysts. On the other hand, the current density of Ni1-xCoxSe is 13 mA cm-2@93 mV and 63 mA cm-2@140 mV with illumination, which is 30% and 26% higher than that without solar illumination assistance, respectively. Therefore, we believe that inducing sunlight to electrocatalytic hydrogen evolution in water splitting could be a supplementary footprint toward the utilization of solar energy.

Keywords: nickel selenide; ni1 xcoxse; electrocatalytic hydrogen; hydrogen evolution

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.