LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Regulating the electronic and spin structure of endohedral metallofullerenes: a case investigation of Sc3N@C80 and Sc3C2@C80.

Photo from wikipedia

The electrochemical and paramagnetic properties of endohedral metallofullerenes (EMFs) have drawn extensive attention due to their huge potential in the fields of molecular devices, biomedicines, quantum information processing, etc. Exohedral… Click to show full abstract

The electrochemical and paramagnetic properties of endohedral metallofullerenes (EMFs) have drawn extensive attention due to their huge potential in the fields of molecular devices, biomedicines, quantum information processing, etc. Exohedral modification of the fullerene carbon cage, such as in the classical Prato reaction, is an effective and facile approach to regulate the electronic structure and molecular dynamics of EMFs. In this work, novel pyrrolidine products of Sc3N@C80 and Sc3C2@C80 were successfully synthesized via Prato reactions using L-cysteine and paraformaldehyde. Structure characterizations demonstrated that two regioisomers with a [5,6] and a [6,6] cycloaddition on the Ih-C80 cage were obtained both for Sc3N@C80 and Sc3C2@C80. Besides, the [6,6]-monoadduct of Sc3N@C80 was thermally stable while the [5,6]-monoadduct exhibited a retro-cycloaddition ability to recover the pristine Sc3N@C80. Electrochemical measurements revealed that the redox potential of Sc3N@C80 could be tuned via such exohedral modifications. Furthermore, the paramagnetic property and internal dynamics of the encapsulated Sc3C2 cluster of Sc3C2@C80 can be well-regulated by controlling the spin density of the molecule. The present work could provide a new approach to regulate the electronic and/or spin structure of EMFs.

Keywords: structure; sc3n c80; c80; sc3c2 c80

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.