LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A three-dimensional Mn-based MOF as a high-performance supercapacitor electrode.

Photo by lunarts from unsplash

Developing new high-performance electrode materials for improving the energy density of supercapacitors is an important task. Herein, a new three-dimensional (3D) metal-orgainc framework (MOF) [Mn(BGPD)(H2O)2] (Mn-BGPD; BGPD = N,N'-bis(glycinyl)pyromellitic diimide)… Click to show full abstract

Developing new high-performance electrode materials for improving the energy density of supercapacitors is an important task. Herein, a new three-dimensional (3D) metal-orgainc framework (MOF) [Mn(BGPD)(H2O)2] (Mn-BGPD; BGPD = N,N'-bis(glycinyl)pyromellitic diimide) was synthesized. When Mn-BGPD is used as the electrode material of supercapacitors, in a three-electrode setup, it shows an outstanding specific capacitance of 832.6 F g-1 at a current density of 1 A g-1. The asymmetrical supercapacitor of Mn-BGPD shows an attractive specific capacitance of 100 F g-1 at 1 A g-1, which corresponds to an excellent energy density of 35.5 W h kg-1. Moreover, better cycling stability with a capacitance retention of 46.7% is also shown. The high electrochemical performance makes Mn-BGPD a very promising electrode material for supercapacitors.

Keywords: dimensional based; supercapacitor; bgpd; three dimensional; high performance; performance

Journal Title: Dalton transactions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.