Novel chiral hybrid perovskites are highly demanded for various advanced applications such as spintronics, optoelectronics, photovoltaics etc. However, the scope of these new materials is still limited. Herein, we present… Click to show full abstract
Novel chiral hybrid perovskites are highly demanded for various advanced applications such as spintronics, optoelectronics, photovoltaics etc. However, the scope of these new materials is still limited. Herein, we present new 2D hybrid perovskites based upon chiral α-amino acid L-histidine. The generalized formula of these new compounds can be denoted as (L-HisH)2PbBrxI4-x (where L-His = L-histidine; x = 4, 3, 2, 1, 0.4 and 0). All perovskites are characterized by a very similar structural motif that consists of corner-sharing lead halide octahedra arranged in one-layer thin inorganic slabs interleaved by organic layers established by L-histidinium(1+) cations. L-Histidine provides a breaking of spatial parity of these perovskites that results in their non-centrosymmetric crystal structures. These compounds show a multiband absorption up to 590 nm for iodide perovskite. In addition, new compounds display pronounced single-peak photoluminescence, which finely blue shifts upon the gradual substitution of iodine by bromine. New perovskites exhibit excellent thermal stability up to 490 K and 445 K for bromide and iodide compounds, respectively. These results show the ability of L-histidine to produce novel and highly demanded chiral hybrid perovskites.
               
Click one of the above tabs to view related content.