LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mesoporous multi-valence manganese oxides composite nanotubes boosting long-life lithium-ion batteries.

Photo from wikipedia

Multi-component nano-oxide composite materials may present special synergistic effects as anode materials for lithium-ion batteries. Mesoporous β-MnO2/Mn3O4 composite nanotubes are built here via controlling the deoxidation process of carbon-coating to… Click to show full abstract

Multi-component nano-oxide composite materials may present special synergistic effects as anode materials for lithium-ion batteries. Mesoporous β-MnO2/Mn3O4 composite nanotubes are built here via controlling the deoxidation process of carbon-coating to induce a partial phase transition of high valence manganese dioxides. Compared to single β-MnO2 nanotubes or Mn3O4@C nanotubes, the mesoporous β-MnO2/Mn3O4@C composite nanotubes exhibit superior electrochemical properties. 679 mA h g-1 of reversible specific capacity and 86% of capacity retention after 1000 cycles at 1 A g-1 current density are obtained. The excellent performance is attributed to the unique multiple phase transitions regulation phenomena of manganese oxide occurring in the β-MnO2/Mn3O4 composite material during the electrochemical processes, which significantly extends the cycle life of the β-MnO2/Mn3O4 composite material.

Keywords: ion batteries; lithium ion; mno2 mn3o4; composite nanotubes; mn3o4 composite; valence manganese

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.