LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Supramolecular encapsulation of hexaaquacobalt(II) cations in a hydrogen-bonded framework for slow magnetic relaxation and high proton conduction.

Photo by martindorsch from unsplash

The supramolecular assembly of hexaaquacobalt(II) nitrate and a tetradentate carboxylate ligand resulted in the isolation of a cobalt hydrogen-bonded organic framework (HOF). Variable-temperature X-ray diffraction experiments reveal high thermal stability… Click to show full abstract

The supramolecular assembly of hexaaquacobalt(II) nitrate and a tetradentate carboxylate ligand resulted in the isolation of a cobalt hydrogen-bonded organic framework (HOF). Variable-temperature X-ray diffraction experiments reveal high thermal stability of the framework sustained by charge-assisted, multiple hydrogen bonding interactions with the co-former. Interestingly, the material shows field-induced slow relaxation of magnetization originating from the magnetically anisotropic Co2+ ions within the supramolecular framework, revealing a rare single-ion magnet (SIM) HOF. Additionally, the HOF also exhibits high proton conductivity above 100 °C due to the extensive H-bond networks and high content of water and carboxylate within the material. More importantly, these results not only observe the magnetic and electrical properties of an old molecule but also demonstrate a significant turn-on effect of multifunctionalities from non-functional synthons achieved in a supramolecular approach.

Keywords: high proton; hexaaquacobalt; framework; hydrogen; relaxation; hydrogen bonded

Journal Title: Dalton transactions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.