Constructing a unique electrochemical interface to enhance the catalytic capacity of Pt-based catalysts is indispensable for wider application of the hydrogen evolution reaction (HER). Herein, platinum-analogous molybdenum carbide (Mo2C) was… Click to show full abstract
Constructing a unique electrochemical interface to enhance the catalytic capacity of Pt-based catalysts is indispensable for wider application of the hydrogen evolution reaction (HER). Herein, platinum-analogous molybdenum carbide (Mo2C) was combined with a lower content of Pt to construct the Pt/Mo2C (C) heterostructure via a solid-phase method, using ammonium molybdate as the precursor. Vulcan-C served as a support to promote the distribution of the Pt and Mo2C heterostructure, and cooperative effects between Pt and the Mo2C heterostructure contributed to the significantly improved catalytic capacity of Pt. The obtained Pt/Mo2C (C) exhibits superior HER activity and enhanced long-term durability in the acidic medium, with a low overpotential of 38 mV at 10 mA cm-2 and a low Tafel slope of 24 mV dec-1. In particular, a drastically enhanced amount of H2 production can be achieved (6837.28 mmol h-1 g-1). This facile approach not only provides a new pathway for constructing novel heterostructures but also gives an insight into the design of cost-effective Pt-based materials for an efficient HER.
               
Click one of the above tabs to view related content.