This is the first report on slow magnetic relaxation in an S = 1/2 system based on a first-row transition metal ion with the polyoxometalate skeleton [(n-C4H9)4N]4H2[SiW11O39Cu] (1). The X-band… Click to show full abstract
This is the first report on slow magnetic relaxation in an S = 1/2 system based on a first-row transition metal ion with the polyoxometalate skeleton [(n-C4H9)4N]4H2[SiW11O39Cu] (1). The X-band electron-spin-resonance spectrum of 1 measured at room temperature indicates that the copper ion experiences significantly reduced intermolecular interactions compared to the potassium salt and that it adopts a five-coordinated square-pyramidal coordination geometry. The AC magnetic-susceptibility measurements revealed that 1 undergoes slow magnetic relaxation in an applied static magnetic field (Hdc). The extracted spin-lattice relaxation time (92 ms at 1.8 K and Hdc = 5000 Oe) for 5% magnetically diluted 1, [(n-C4H9)4N]4H2[SiW11O39Cu0.05Zn0.95] (dil.1), is comparable to those of other potential S = 1/2 spin qubits. A relaxation-time analysis indicated that Raman spin-lattice relaxation dominates even at low temperatures in an optimized field. The extracted Raman exponent (n = 2.30) is smaller than those of other S = 1/2 complexes that carry organic ligands, which implies that the decrease in relaxation time at higher temperatures is likely to be moderate.
               
Click one of the above tabs to view related content.