LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Chemical and electronic structure of the heavily intermixed (Cd,Zn)S:Ga/CuSbS2 interface.

Photo by mybbor from unsplash

The interface formation and chemical and electronic structure of the (Cd,Zn)S:Ga/CuSbS2 thin-film solar cell heterojunction were studied using hard X-ray photoelectron spectroscopy (HAXPES) of the bare absorber and a buffer/absorber… Click to show full abstract

The interface formation and chemical and electronic structure of the (Cd,Zn)S:Ga/CuSbS2 thin-film solar cell heterojunction were studied using hard X-ray photoelectron spectroscopy (HAXPES) of the bare absorber and a buffer/absorber sample set for which the buffer thickness was varied between 1 and 50 nm. We find a heavily intermixed interface, involving Cu, Zn, and Cd as well as significant Ga and Cu profiles in the buffer. The valence band (VB) offset at the buffer/absorber interface was derived as (-1.3 ± 0.1) eV, which must be considered an upper bound as the Cu diffused into the buffer might form a Cu-derived VB maximum located closer to the Fermi level. The estimated conduction band minimum was 'cliff'-like; a situation made more severe considering the Cu-deficiency found for the CuSbS2 surface. The complex interface structure's effect on the performance of (Cd,Zn)S:Ga/CuSbS2-based solar cells and its limitation is discussed together with possible mitigation strategies.

Keywords: structure; cusbs2; electronic structure; heavily intermixed; interface; chemical electronic

Journal Title: Faraday discussions
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.