LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A rotating ring disc electrode study of photo(electro)catalyst for nitrogen fixation.

Photo by _michaelsala_ from unsplash

There are numerous reports of photo(electro)catalysts demonstrating activity for nitrogen reduction to ammonia and a few reports of photo(electro)catalysts demonstrating activity for nitrogen oxidation to nitric acid. However, progress in… Click to show full abstract

There are numerous reports of photo(electro)catalysts demonstrating activity for nitrogen reduction to ammonia and a few reports of photo(electro)catalysts demonstrating activity for nitrogen oxidation to nitric acid. However, progress in advancing solar-to-fertilizer applications is slow, due in part to the pace of catalyst screening. Most evaluations of photo(electro)catalysts activity occur using batch reactors. This is because common product analyses require accumulation of ammonia or nitric acid in the reactor to overcome instrument detection limits. The primary aim here is to examine the use of an electroanalytical method, rotating ring disk electrode voltammetry (RRDE), to detect ammonia produced by a nitrogen fixing photo(electro)catalyst. To examine the potential for RRDE, we investigated a photo(electro)catalyst known to reduce nitrogen to ammonia (titania), while varying the applied electrochemical potential and degree of illumination on the disk. We show that the observed ammonia oxidation at the ring electrode corresponds strongly with ammonia measurements obtained from the bulk electrolyte. Indicating that RRDE may be effective for catalyst screening. The chief limitation of this approach is the need for an alkaline electrolyte. In addition, this approach does not rule out the presence of adventitious ammonia.

Keywords: photo electro; catalyst; electro catalyst; ammonia; nitrogen

Journal Title: Faraday discussions
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.