LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Absolute film separation of dyes/salts and emulsions with a superhigh water permeance through graded nanofluidic channels.

Photo by a2eorigins from unsplash

The development of multifunctional films with a high permeability has been of great concern for effective separation of complex aqueous contaminants, especially in the face of zero or near-zero release… Click to show full abstract

The development of multifunctional films with a high permeability has been of great concern for effective separation of complex aqueous contaminants, especially in the face of zero or near-zero release regulations. Inspired by the natural structure of sandy soils, polydopamine-wrapped/connected polypyrrole sub-micron spheres (PPSM) were closely packed onto a polypyrrole-coated bacterial cellulose (PBC) support, by which a new two-layered PBC/PPSM composite film formed with graded nanofluidic channels. Interestingly, after being soaked in complex water environments of ethanol, acids, bases, heat, cold and high salinity, or else bended/folded for more than 10 times, the structure and performance of this film still stayed the same, validating its high structural stability and flexibility. Even in a high salinity environment over seawater, this PBC/PPSM film exhibits a dye-separation capacity of almost 100% with a surprisingly superhigh water permeance over one thousand L h-1 m-2 bar-1, one or two magnitudes higher than that of the related films reported in the literature. Meanwhile, the ability for effective oil-water-separation was also validated. Besides the superhydrophilicity and underwater superoleophobicity, the synapse-like-structure-induced graded nanofluidic channels are also proposed to play a key role for rendering such an outstandingly comprehensive performance of the film by greatly overcoming fluid resistance and reducing permeation viscosity.

Keywords: graded nanofluidic; nanofluidic channels; superhigh water; film; separation

Journal Title: Materials horizons
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.