LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinguishing the respective determining factors for spectral broadening and concentration quenching in multiple resonance type TADF emitter systems.

Photo from wikipedia

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters have attracted much recent attention due to their narrow emission spectra and high photoluminescence quantum yields (PLQYs). Spectral broadening and… Click to show full abstract

Multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters have attracted much recent attention due to their narrow emission spectra and high photoluminescence quantum yields (PLQYs). Spectral broadening and concentration quenching at high doping concentrations are two issues currently limiting the development of MR-TADF emitters. However, the origins of these have not been fully clarified so far. In this work, by investigating emitters with the same MR cores but peripheral groups of different steric types, we distinguished that the spectral broadening and concentration quenching are mainly caused by excimer formation and triplet exciton annihilation, respectively. This understanding on aggregated behaviors of MR emitters provides new insight for the further development of high-performance MR-TADF emitters with low concentration sensitivities.

Keywords: concentration quenching; tadf; concentration; multiple resonance; broadening concentration; spectral broadening

Journal Title: Materials horizons
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.