LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Giant electrocaloric effect in a molecular ceramic.

The electrocaloric effect (ECE) is an efficient and environmentally friendly method for solid-state refrigeration driven by an electric field. However, disregarding the ECE performance, the mass of materials also limits… Click to show full abstract

The electrocaloric effect (ECE) is an efficient and environmentally friendly method for solid-state refrigeration driven by an electric field. However, disregarding the ECE performance, the mass of materials also limits the amount of energy transferred in the cooling process. While molecular ECE materials have been attracting intensive attention with their excellent ECE properties, most reported molecular compounds can only be utilized in the form of thin films or single crystals. Unlike inorganic ceramics, molecular thin films and single crystals are very difficult to prepare in a large amount, which greatly restrains the future application of those materials. In this work, we report an excellent molecular ECE material in the form of polycrystalline molecular ceramics. Such molecular ceramics are composed of plastic molecular ferroelectrics, and can fulfil the requirement of large mass, easy processing, excellent performance and low energy consumption. Our molecular ceramic of HQReO4 (HQ: protonated quinuclidine) demonstrates an isothermal entropy change of 5.8 J K-1 kg-1 and an adiabatic temperature change of 3.1 K. Notably, by a simple low-temperature pressing process without added adhesives (about 373 K), an HQReO4 molecular ceramic block can be obtained, and its ECE performance is observed to be comparable to that of single crystals, for the first time. This work proposes a new application form for molecular electrocaloric materials, which opens up new ideas for solid-state refrigeration.

Keywords: single crystals; molecular ceramic; electrocaloric effect; effect molecular; giant electrocaloric

Journal Title: Materials horizons
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.