LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Flexible CuS-embedded human serum albumin hollow nanocapsules with peroxidase-like activity for synergistic sonodynamic and photothermal cancer therapy.

Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules… Click to show full abstract

Nanoparticle flexibility is an important parameter in determining cell uptake and tumor accumulation, thus modulating therapeutic efficiency in cancer treatment. Herein, we successfully prepared CuS-embedded human serum albumin hollow nanocapsules (denoted CuS/HSA) by a hard-core-assisted layer-by-layer coating approach. This approach afforded CuS/HSA hollow nanocapsules with controllable shell thickness, tunable flexibility, uniform size (272.9 nm), a large hollow cavity, peroxidase-like activity, excellent photothermal conversion ability, and a high tetra-(4-aminophenyl) porphyrin (TAPP) loading capacity (27.3 wt%). The peroxidase-like activity of the CuS nanoparticles enabled them to overcome tumor hypoxia and augment the sonodynamic therapeutic (SDT) effects and photothermal conversion ability for photothermal therapy (PTT). In vitro experiments showed that the CuS/HSA-TAPP hollow nanocapsules efficiently induced cancer cell apoptosis under US irradiation and cancer cell ablation under laser irradiation, thus facilitating synergistic SDT and PTT. Importantly, the flexibility of the CuS/HSA hollow nanocapsules resulted in significantly enhanced cellular internalization and a longer mean residence time (131.3 h) than their solid counterparts (21.0 h). In a breast tumor model, the flexible CuS/HSA hollow nanocapsules exhibited high tumor accumulation of up to 27.1%. In vivo experiments demonstrated that the flexible CuS/HSA-TAPP hollow nanocapsules effectively eliminated breast tumors via the synergistic effect of SDT and PTT.

Keywords: cus hsa; hollow nanocapsules; peroxidase like; cus; cancer

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.