LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The design and synthesis of spinel one-dimensional multi-shelled nanostructures for Li-ion batteries.

Photo from wikipedia

The rational design, synthesis, and massive production of one-dimensional (1D) spinel composite oxides with multi-shelled nanostructures are critical for the realization of highly efficient energy conversion and storage. However, owing… Click to show full abstract

The rational design, synthesis, and massive production of one-dimensional (1D) spinel composite oxides with multi-shelled nanostructures are critical for the realization of highly efficient energy conversion and storage. However, owing to the limitations of the synthetic methods, the 1D multi-shelled nanostructures, especially for multi-element oxides and binary-metal oxides, have been rarely fabricated. Herein, we design a facile and general method to fabricate 1D spinel composite oxides with complex architectures. It is found that the concentration of the precursor polymer PAN can control the structures of the products at optimal heating rate, including hollow nanofibers, wire-in-tube nanofibers, and tube-in-tube nanofibers. This technique could be extended to various inorganic multi-element oxides and binary-metal oxides. Moreover, numerous twin boundaries (TBs) are found to form in the Co0.5Ni0.5Fe2O4 tube-in-tube nanofibers. Benefiting from both large porosity and TBs structures, the tube-in-tube hollow nanostructures are measured to possess superior electrochemical performances with high energy and stability in lithium-ion storage.

Keywords: design synthesis; shelled nanostructures; multi shelled; one dimensional

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.