LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Atomically dispersed Ru catalysts for polychlorinated aromatic hydrocarbon oxidation.

Photo from wikipedia

The development of cost-efficient catalysts with good catalytic activity is an urgent task for polychlorinated aromatic hydrocarbon (PCAH) oxidation. Herein, atomically dispersed Ru catalysts (denoted as Ru ADCs) proved by… Click to show full abstract

The development of cost-efficient catalysts with good catalytic activity is an urgent task for polychlorinated aromatic hydrocarbon (PCAH) oxidation. Herein, atomically dispersed Ru catalysts (denoted as Ru ADCs) proved by aberration corrected high-angle annular dark-field scanning transmission electron microscopy and X-ray absorption spectroscopy were synthesized for PCAH oxidation. The oxidation results showed that 0.2 Ru ADCs exhibited enhanced catalytic activity (T50% < 250 °C, T90% < 300 °C) compared with the T90% > 300 °C on 0.2 Ru nanoparticles (NPs). Besides, 0.2 Ru ADCs demonstrated high CO2 yield with >60% CO2 ratio, along with good stability (>80% conversion for 800 mins). The better performance of 0.2 Ru ADCs was verified by kinetic experiments, in which, the apparent activation energy associated with 0.2 Ru ADCs (50.8 kJ mol-1) was significantly lower compared with that with 0.2 Ru NPs (80.0 kJ mol-1). The superior oxidation activity of 0.2 Ru ADCs was also applied to toluene oxidation. H2 temperature-programmed reduction ensured the stronger interaction of Ru species with the supports in Ru ADCs than that in Ru NPs, thus inhibiting Ru species aggregation and favoring their higher dispersion ensured by CO temperature-programmed desorption. The present work provides a potential strategy to maximize the usage of noble metal catalysts for PCAH oxidation.

Keywords: atomically dispersed; oxidation; aromatic hydrocarbon; dispersed catalysts; polychlorinated aromatic

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.