LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Integrating machine learning interpretation methods for investigating nanoparticle uptake during seed priming and its biological effects.

Photo by cokdewisnu from unsplash

Seed priming by nanoparticles is an environmentally-friendly solution for alleviating malnutrition, promoting crop growth, and mitigating environmental stress. However, there is a knowledge gap regarding the nanoparticle uptake and the… Click to show full abstract

Seed priming by nanoparticles is an environmentally-friendly solution for alleviating malnutrition, promoting crop growth, and mitigating environmental stress. However, there is a knowledge gap regarding the nanoparticle uptake and the underlying physiological mechanism. Machine learning has great potential for understanding the biological effects of nanoparticles. However, its interpretability is a challenge for building trust and providing insights into the learned relationships. Herein, we systematically investigated how the factors influence nanoparticle uptake during seed priming by ZnO nanoparticles and its effects on seed germination. The properties of the nanoparticles, priming solution, and seeds were considered. Post hoc interpretation and model-based interpretation of machine learning were integrated into two ways to understand the mechanism of nanoparticle uptake during seed priming and its biological effects on seed germination. The results indicated that nanoparticle concentration and ionic strength influenced the shoot fresh weight mainly by controlling the nanoparticle uptake. The nanoparticle uptake had a significant slowdown when the nanoparticle concentration exceeded 50 mg L-1. Although other factors, such as zeta potential and hydrodynamic diameter, had no obvious effects on nanoparticle uptake, their biological effects cannot be ignored. This approach can promote the safer-by-design strategy of nanomaterials for sustainable agriculture.

Keywords: machine learning; nanoparticle uptake; seed priming; seed; biological effects

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.