LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile synthesis of biogenic silica nanomaterial loaded transparent tragacanth gum hydrogels with improved physicochemical properties and inherent anti-bacterial activity.

Photo from wikipedia

In this report, biogenic, crystalline (∼60.5 ± 2%) bowknot structured silica nanoparticles (BSNPs) of length ∼ 274 ± 7 nm and width ∼ 36 ± 2 nm were isolated from… Click to show full abstract

In this report, biogenic, crystalline (∼60.5 ± 2%) bowknot structured silica nanoparticles (BSNPs) of length ∼ 274 ± 7 nm and width ∼ 36 ± 2 nm were isolated from invasive species viz. Lantana camara. These were then chemically modified using nitrogen containing moieties viz. APTES and CTAB. These modified BSNPs were then used as electrostatic cross-linking agents for the formation of tragacanth gum (TG) hydrogels. The cytocompatible CTAB@BSNP-TG hydrogels documented ∼10-12 fold enhancement in anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa when compared with TG hydrogels. Disruption of the bacterial membrane by ROS generation and protein leakage were responsible for anti-bacterial activity. A cell migration assay suggested that CTAB@BSNP-TG augmented the cell proliferation of NIH-3T3 cells compared to other TG hydrogels. The present study will pave the path for the development of organic-inorganic hybrid nanocomposite-based hydrogels for anti-bacterial and cell migration applications.

Keywords: anti bacterial; gum hydrogels; bacterial activity; tragacanth gum

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.