LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces.

Photo from wikipedia

On account of their wide range of applications in self-cleaning, anti-icing, frost suppression, etc., superhydrophobic surfaces have attracted considerate attention. However, most of the superhydrophobic surfaces can only be prepared… Click to show full abstract

On account of their wide range of applications in self-cleaning, anti-icing, frost suppression, etc., superhydrophobic surfaces have attracted considerate attention. However, most of the superhydrophobic surfaces can only be prepared on the surfaces of specific materials and are easily damaged in the case of friction. In this work, we propose a facile method to achieve superhydrophobicity on various substrate surfaces. By femtosecond laser direct processing, micron-level grooves and protrusions are constructed on substrates to form a protective layer. Then, the substrates covered by polytetrafluoroethylene (PTFE) were scanned to make the surfaces of the substrates superhydrophobic. Since the PTFE micro-nano-particles are evenly distributed on the grooves and protrusions, the surfaces exhibit robust superhydrophobicity with excellent anti-friction performance that is independent of the substrate properties. This work provides an efficient and environmentally friendly path for achieving robust superhydrophobic surfaces on various substrates.

Keywords: substrate independent; hierarchical textures; fabrication hierarchical; superhydrophobic surfaces; facile fabrication; textures substrate

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.