LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energy-saving H2 production from a hybrid acid/alkali electrolyzer assisted by anodic glycerol oxidation.

Photo from wikipedia

Water electrolysis is a promising technology for efficient hydrogen production, but it has been heavily hindered by the sluggish kinetics and high potential of the anodic oxygen evolution reaction (OER).… Click to show full abstract

Water electrolysis is a promising technology for efficient hydrogen production, but it has been heavily hindered by the sluggish kinetics and high potential of the anodic oxygen evolution reaction (OER). Replacing the OER with the glycerol oxidation reaction (GOR) at the anode is recognized as a potential strategy to address this issue. In this work, the self-supported electrocatalytic electrode of Cu-Cu2O nanoclusters on carbon cloth (Cu-Cu2O/CC) is fabricated for the electrocatalysis of the GOR, which has high activity towards the GOR, reaching 10 mA cm-2 at an applied voltage of 1.21 V, and shows high selectivity for formate production with a faradaic efficiency (FE) of over 80% in a wide potential range. Moreover, a hybrid acid/alkali electrolyzer is assembled by coupling the Cu-Cu2O/CC anode for the GOR in an alkaline electrolyte with commercial Pt/C as the cathode for the hydrogen evolution reaction (HER) in an acid electrolyte. The dual-electrolyte electrolytic cell only requires an applied voltage of 0.59 V to reach 10 mA cm-2 with a FE of ∼100% for H2 and 97% for formate production. This work provides a facile strategy for the application of glycerol upgradation in energy-saving water electrolysis systems.

Keywords: acid alkali; glycerol oxidation; hybrid acid; glycerol; production; alkali electrolyzer

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.