LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hypercrosslinked polymer-mediated fabrication of binary metal phosphide decorated spherical carbon as an efficient and durable bifunctional electrocatalyst for rechargeable Zn-air batteries.

Photo by mattpalmer from unsplash

Bifunctional oxygen catalysts with excellent catalytic activity and durability towards both oxygen reduction and oxygen evolution reactions (ORR/OER) are pivotal for long-term rechargeable Zn-air batteries. Herein, we report a spherical… Click to show full abstract

Bifunctional oxygen catalysts with excellent catalytic activity and durability towards both oxygen reduction and oxygen evolution reactions (ORR/OER) are pivotal for long-term rechargeable Zn-air batteries. Herein, we report a spherical carbon decorated with FeP and CoP nanoparticles (denoted as FeCoP/NPC) as an ORR/OER bifunctional electrocatalyst for rechargeable Zn-air batteries. HCTCz@Fe/Co-PA is first produced by the modification of phytic acid (PA) onto (into) a porous cross-linked polymeric sphere of poly(bis(N-carbazolyl)-1,2,4,5-tetrazine) (HCTCz), followed by chelating with metal ions (i.e., Fe3+ and Co2+). The subsequent pyrolysis yields FeCoP/NPC, which shows prominent activity and reliability for the ORR and OER due primarily to the synergistic effect of FeP and CoP active sites and N/P co-doped carbon. The aqueous Zn-air battery assembled with FeCoP/NPC provides high specific capacity and peak power density. Notably, the constructed Zn-air battery can be repetitively charged and discharged for 1200 h at 5 mA cm-2. In addition, a flexible solid-state Zn-air battery made from FeCoP/NPC exhibits a power density of 74 mW cm-2 and repeatedly works for 90 h at 2 mA cm-2. This work opens up an avenue for the preparation of highly efficient bifunctional electrocatalysts for Zn-air batteries considering the extensive N-rich polymer precursors and various metal phosphide nanoparticles.

Keywords: air batteries; air; fecop npc; spherical carbon; rechargeable air

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.