LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A core/shell nanogenerator achieving pH-responsive nitric oxide release for treatment of infected diabetic wounds.

Photo by javardh from unsplash

Nitric oxide is critical for eliminating infection and promoting regeneration in diabetic wounds. However, clinical uses of nitric oxide are limited by its high activity and lack of specificity in… Click to show full abstract

Nitric oxide is critical for eliminating infection and promoting regeneration in diabetic wounds. However, clinical uses of nitric oxide are limited by its high activity and lack of specificity in targeting infections. Herein, we develop an intelligent nitric oxide nanogenerator comprising isosorbide dinitrate (ISDN)-coated copper sulfide (CuS)/calcium carbonate (CaCO3) core/shell nanoparticles (CuS@CaCO3-ISDN) to target the acidic microenvironment of the infected diabetic wounds. Meaningfully, triggered by acid decomposition of CaCO3, this nanogenerator can achieve a responsive and accelerated release of nitric oxide from ISDN through enzyme-mimicking redox processes that involve CuS nanoparticles and then inactivate biofilm bacteria through the pathways of oxidative stress and disruption of adenosine triphosphate (ATP)-related energy metabolism. Moreover, after eliminating the infection, the pH-responsive release of nitric oxide can promote the proliferation of blood vessels and tissue regeneration and accelerate diabetic wound closure. This study expands the use of nitric oxide donors in wound treatment by developing the enzyme-mimicking release strategy, and the pH-responsive core/shell nanogenerator is promising for a variety of anti-infection therapeutic applications.

Keywords: nanogenerator; core shell; diabetic wounds; nitric oxide; release

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.