LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Uniform-embeddable-distributed Ni3S2 cocatalyst inside and outside a sheet-like ZnIn2S4 photocatalyst for boosting photocatalytic hydrogen evolution.

Photo by supermojor from unsplash

The rational cocatalyst design is considered a significant route to boost the solar-energy conversion efficiency for photocatalytic H2 generation. However, the traditional cocatalyst-loading on the surface of a photocatalyst easily… Click to show full abstract

The rational cocatalyst design is considered a significant route to boost the solar-energy conversion efficiency for photocatalytic H2 generation. However, the traditional cocatalyst-loading on the surface of a photocatalyst easily leads to scarce exposed active sites induced by the agglomeration of cocatalysts and a hindrance of the light absorption of the photocatalyst, thus significantly limiting the enhancement of the photocatalytic H2-generation performance. Herein, a new concept of uniform-embeddable-distributed cocatalysts is put forward. Consequently, uniform-embeddable-distributed cocatalysts of Ni3S2 were designed and constructed inside and outside of the nanosheet-like ZnIn2S4 photocatalyst to form a Ni3S2/ZnIn2S4 binary system (UEDNiS/ZIS). The unique uniform-embeddable-distributed Ni3S2 cocatalyst (UEDNiS) could provide abundant exposed active sites, facilitate the spatial separation and ordered transfer of charges inside and outside of ZnIn2S4 nanosheets, and reduce the hydrogen-adsorption free energy for photocatalytic H2-generation reactions. As a result, UEDNiS/ZIS exhibited a high photocatalytic H2-generation rate of 60 μmol h-1 under visible-light irradiation, almost 7.8 and 2.8 times higher than pristine ZnIn2S4 and the traditional surface-loaded Ni3S2/ZnIn2S4 (TSLNiS/ZIS), respectively. This work represents a new cocatalyst-design approach to realize high-efficiency hydrogen evolution in binary heterostructured photocatalytic systems.

Keywords: znin2s4; inside outside; cocatalyst; photocatalyst; embeddable distributed; uniform embeddable

Journal Title: Nanoscale
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.