LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO2 to C2+ products.

Photo by lensingmyworld from unsplash

The electrochemical CO2 reduction reaction (CO2RR) to added-value C2+ products is a worthy way to effectively reduce CO2 levels in the atmosphere. Cu nanomaterials have been proposed as efficient CO2RR… Click to show full abstract

The electrochemical CO2 reduction reaction (CO2RR) to added-value C2+ products is a worthy way to effectively reduce CO2 levels in the atmosphere. Cu nanomaterials have been proposed as efficient CO2RR catalysts for producing C2+ products; however, the difficulties in controlling their efficiency and selectivity hinder their applications. Herein, we propose a simple routine to construct a graphdiyne (GDY) supported Ag-Cu nanocluster as a C2+ product-selective electrocatalyst and optimize the composition by electrochemical performance screening. The synthesized Ag-Cu nanoclusters are uniformly distributed on the surface of GDY with particle sizes constricted to 3.7 nm due to the strong diyne-Cu interaction. Compared to Cu/GDY, Ag-Cu/GDY tandem schemes exhibited superior CO2RR to C2+ performance with a Faraday efficiency (FE) of up to 55.1% and a current density of 48.6 mA cm-2 which remain stable for more than 33 hours. Theoretical calculations show that the adsorption energy of CO is much higher on Cu (-1.066 eV) than on Ag (-0.615 eV), thus promoting the drift of *CO from Ag to Cu. Moreover, the calculations indicate that the key C-C coupling reaction of *CO with *COH is more favored on Ag-Cu/GDY than on the original Cu/GDY which contributes to the formation of C2+ products. Our findings shed light on a new strategy of combining a GDY support with a tandem catalytic scheme for developing new CO2RR catalysts with superior selectivity and activity for C2+ products.

Keywords: tandem catalytic; co2rr; catalytic scheme; gdy; reduction; co2

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.