LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

UV-Visible photo-reactivity of permanently polarized inorganic nanotubes coupled to gold nanoparticles.

Photo by teveir from unsplash

Hybrid aluminosilicate nanotubes (Imo-CH3) have the ability to trap small organic molecules inside their hydrophobic internal cavity while being dispersed in water owing to their hydrophilic external surface. They also… Click to show full abstract

Hybrid aluminosilicate nanotubes (Imo-CH3) have the ability to trap small organic molecules inside their hydrophobic internal cavity while being dispersed in water owing to their hydrophilic external surface. They also display a curvature-induced polarization of their wall, which favors reduction outside the nanotubes and oxidation inside. Here, we coupled bare plasmonic gold nanoparticles (GNPs) with Imo-CH3 and analyzed for the first time the redox reactivity of these hybrid nano-reactors upon UV illumination. We show that the coupling between GNPs and Imo-CH3 significantly enhances the nanotube photocatalytic activity, with a large part of water reduction occurring directly on the gold surface. The coupling mechanism strongly influences the initial H2 production rate, which can go from ×10 to more than ×90 as compared to bare Imo-CH3 depending on the synthesis route of the GNPs. The present results show that this hybrid photocatalytic nano-reactor benefits from a synergy of polarization and confinement effects that facilitate efficient H2 production.

Keywords: imo ch3; gold nanoparticles; photo reactivity; visible photo; reactivity permanently

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.