LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Precisely designed Fex (x = 1-2) cluster nanocatalysts for effective nanocatalytic tumor therapy.

Photo by robbie36 from unsplash

Atomically dispersed metal clusters are considered as promising nanocatalysts due to their excellent physicochemical properties. Here, we report a novel strategy for precisely designing Fex (x = 1-2) cluster nanocatalysts… Click to show full abstract

Atomically dispersed metal clusters are considered as promising nanocatalysts due to their excellent physicochemical properties. Here, we report a novel strategy for precisely designing Fex (x = 1-2) cluster nanocatalysts (Fe1-N-C and Fe2-N-C) with dual catalytic activity, which can catalyze H2O2 into reactive oxygen species (ROS) and oxidize glutathione (GSH) into glutathione disulfide simultaneously. The adsorption energies of Fe-N sites in Fe2-N-C for GSH and H2O2 intermediates were well controlled due to the orbital modulation of adjacent Fe sites, contributing to the higher dual catalytic activity compared to Fe1-N-C. Additionally, tamoxifen (TAM) was loaded into Fe2-N-C (Fe2@TDF NEs) to down-regulate the intracellular pH for higher Fenton-like catalytic efficiency and ROS production. The generated ROS could induce apoptosis and lipid peroxidation, triggering ferroptosis. Meanwhile, upregulation of ROS and lipid peroxidation, along with GSH depletion and GPX4 downregulation could promote the apoptosis and ferroptosis of tumor cells. In addition, the lactic acid accumulation effect of TAM and the high photothermal conversion ability of Fe2@TDF NEs could further enhance the catalytic activity to achieve synergistic antitumor effects. As a result, this work highlights the critical role of adjacent metal sites at the atomic-level and provides a rational guidance for the design and application of nanocatalytic antitumor systems.

Keywords: cluster nanocatalysts; catalytic activity; precisely designed; fex cluster; tumor

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.