LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving adjustable digital-to-analog conversion in memristors with embedded Cs2AgSbBr6 nanoparticles.

Photo from wikipedia

In this work, the proportions of Cs2AgSbBr6 nanoparticles (NPs) mixed in a PMMA film are adjusted to the digital and analog types of resistive switching (RS) behaviors in Ag/PMMA&Cs2AgSbBr6-NPs/ITO memristor… Click to show full abstract

In this work, the proportions of Cs2AgSbBr6 nanoparticles (NPs) mixed in a PMMA film are adjusted to the digital and analog types of resistive switching (RS) behaviors in Ag/PMMA&Cs2AgSbBr6-NPs/ITO memristor devices. It is confirmed that when the concentration of NPs doped in the PMMA film is about 5 wt%, the memristor devices demonstrate bipolar digital RS behaviors with excellent electrical characteristics such as low operating voltage, high ON/OFF ratio (>500), good endurance (>800 cycles), and stable retention ability (>104 s). However, the devices showed a transition to analog-type memristive behavior when the concentration of NPs doped in the PMMA film is around 10 wt%, and several artificial synapse behaviors are successfully simulated. The device model simulation is also used to explore the effect of the NPs on the local electric field and growing filaments. Our work provides an opportunity to explore next-generation artificial synapse devices based on lead-free halide perovskites.

Keywords: analog; digital analog; pmma film; achieving adjustable; cs2agsbbr6 nanoparticles; adjustable digital

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.