LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Investigating the interfacial properties of halide perovskite/TiOx heterostructures for versatile photocatalytic reactions under sunlight.

Photo from wikipedia

Heterostructures of metal halide perovskites and TiOx are efficient photocatalytic materials owing to the combination of the advantages of each compound, specifically the high absorption coefficients and long charge-carrier lifetimes… Click to show full abstract

Heterostructures of metal halide perovskites and TiOx are efficient photocatalytic materials owing to the combination of the advantages of each compound, specifically the high absorption coefficients and long charge-carrier lifetimes of perovskites, and efficient photocatalytic activity of TiOx. However, chemical reduction of CO2 using PNC/TiOx heterostructures without organic solvents has not been reported yet. Here, we report the first solvent-free reduction of CO2 using amorphous TiOx with embedded colloidal perovskite nanocrystals (PNCs). The combination was obtained by carrying out hydrolysis of titanium butoxide (TBOT) on the PNC surface without high-temperature calcination. We proposed a mechanism involving photoexcited electrons being transferred from PNCs to TBOT, enabling photocatalytic reactions using TiOx under visible-light excitation. We demonstrated efficient visible-light-driven photocatalytic reactions at PNC/TiOx interfaces, specifically with a CO production rate of 30.43 μmol g-1 h-1 and accelerated degradation of organic pollutants under natural sunlight. Our work has provided a simple path toward both efficient CO2 reduction and photocatalytic degradation of organic dyes.

Keywords: interfacial properties; properties halide; tiox heterostructures; tiox; investigating interfacial; photocatalytic reactions

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.