LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The role of crystallinity of palladium nanocrystals in ROS generation and cytotoxicity induction.

Photo from wikipedia

Palladium (Pd) nanocrystals with different crystalline forms exhibit distinct enzyme-like activities in generating reactive oxygen species (ROS). How such crystallinity-dependent catalytic activity regulates potential cytotoxicity remains to be elucidated. In… Click to show full abstract

Palladium (Pd) nanocrystals with different crystalline forms exhibit distinct enzyme-like activities in generating reactive oxygen species (ROS). How such crystallinity-dependent catalytic activity regulates potential cytotoxicity remains to be elucidated. In the present work, Pd nanocrystals with four different crystalline forms were synthesized, and the underlying mechanisms involved in ROS-mediated cytotoxicity were systematically revealed. Pd nanocrystals with the {100} (nanocubes) and {111} (nanooctahedrons and nanotetrahedrons) facets triggered cytotoxicity by generating singlet oxygen (1O2) and hydroxyl radicals (OH˙), respectively. Meanwhile, Pd nanoconcave-tetrahedrons, which had both the {110} and {111} facets, induced ROS-mediated cytotoxicity via activating the superoxide (O2˙-) pathway. Consumption of protons and generation of hydroxide during intracellular ROS conversion resulted in pH alkalization, eventually leading to cell death. Our findings emphasize the importance of facet-dependent ROS generation promoted by Pd nanocrystals. Furthermore, alkalization is identified as a new biomarker for analyzing ROS-mediated cytotoxicity.

Keywords: cytotoxicity; ros generation; generation; palladium nanocrystals; crystallinity

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.