LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electron transmission matrix and anion regulation strategy-derived oxygen-deficient δ-MnO2 for a high-rate and long-life aqueous zinc-ion battery.

Photo from wikipedia

Ion migration and electron transmission are vital for manganese dioxides in zinc ion batteries. δ-MnO2 is believed to be more suitable for zinc ion storage due to its layered structure.… Click to show full abstract

Ion migration and electron transmission are vital for manganese dioxides in zinc ion batteries. δ-MnO2 is believed to be more suitable for zinc ion storage due to its layered structure. However, the performance of δ-MnO2 is still hampered by the frustrating conductivity and sluggish reaction kinetics. Herein, atomic engineering is adopted to modify δ-MnO2 at the atomic level to obtain oxygen-deficient δ-MnO2 (N-MnO2). Meanwhile, hollow carbon microtubes (HCMTs) obtained from green and renewable energy grass are proposed as cross-connected electron transmission matrices (CETMs) for MnO2. The biomass-derived CETMs not only optimize reaction kinetics but also facilitate the ion storage performance of MnO2. The as-prepared N-MnO2@HCMTs exhibit high rate capability and enhanced pseudocapacitve behavior contributed by the oxygen-deficient N-MnO2 and CETMs. Ex situ analysis reveals the reversible insertion/extraction of H+ and Zn2+ in N-MnO2@HCMTs during charge/discharge processes. Moreover, the quasi-solid-state N-MnO2@HCMTs//Zn cells are assembled and they deliver extraordinary discharge capacity and a long cyclic lifespan. This study may provide insights for further exploration of cathode materials in AZIBs and promote the large-scale production of aqueous Zn-MnO2 batteries.

Keywords: oxygen deficient; mno2; deficient mno2; zinc ion; electron transmission; ion

Journal Title: Nanoscale
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.