The methanol oxidation reaction (MOR) has recently gained a lot of attention due to its application in fuel cells and electrochemical sensors. To enhance the MOR, noble metal nanoparticles should… Click to show full abstract
The methanol oxidation reaction (MOR) has recently gained a lot of attention due to its application in fuel cells and electrochemical sensors. To enhance the MOR, noble metal nanoparticles should be homogeneously dispersed on the electrode surface with the aid of one suitable support. In this work, 4-aminothiophenol (4-ATP) molecules which contain simultaneously amine and thiol groups were electro-grafted onto the electrode surface to provide anchoring sites, limit aggregation and ensure good dispersion of metal nanoparticles. The results showed a high density of platinum nanoparticles (PtNPs) with an average size of 25 nm on the glassy electrode modified with a 4-ATP supporting layer. Consequently, the MOR was improved by 2.1 times with the aid of the grafted 4-ATP layer. The electrochemical sensor based on PtNPs/4-ATP/GCE is able to detect MeOH in a linear range from 1.26 to 21.42 mM with a detection limit of 1.21 mM.
               
Click one of the above tabs to view related content.