LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of organic components in cuttlebone on the morphological and mechanical properties of peroxide cross-linked cuttlebone/natural rubber composites

Photo from wikipedia

The clarification of the role of organic components in cuttlebone particles on the morphological and mechanical properties in terms of the strain-induced crystallization (SIC) of peroxide cross-linked cuttlebone/natural rubber (NR)… Click to show full abstract

The clarification of the role of organic components in cuttlebone particles on the morphological and mechanical properties in terms of the strain-induced crystallization (SIC) of peroxide cross-linked cuttlebone/natural rubber (NR) composites was revealed for the first time in this study. The organic components in cuttlebone particles affected the increased bound rubber layers and the decreased rubber chain orientation due to the formation of interfacial interactions (filler-to-filler and/or filler-to-rubber interactions). During SIC, the presence of organic components in cuttlebone particles did not significantly affect the crystallinity index and crystallite size in cuttlebone/NR composites. The increased moduli in the stress–strain curve resulted from the presence of biofiller, SIC, and organic components in the cuttlebone. Therefore, the presence of organic components in biofiller is an important factor in improving the mechanical properties of green rubber composite materials.

Keywords: components cuttlebone; organic components; rubber; morphological mechanical; mechanical properties

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.