LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic and mechanistic insights into the degradation of clofibric acid in saline wastewater by Co2+/PMS process: a modeling and theoretical study

Photo from wikipedia

Recently, the degradation of non-chlorinated organic pollutants in saline pharmaceutical wastewater by SO4˙−-based advanced oxidation processes (AOPs) has received widespread attention. However, little is known about the oxidation of chlorinated… Click to show full abstract

Recently, the degradation of non-chlorinated organic pollutants in saline pharmaceutical wastewater by SO4˙−-based advanced oxidation processes (AOPs) has received widespread attention. However, little is known about the oxidation of chlorinated compounds in SO4˙−-based AOPs. This study chose clofibric acid (CA) as a chlorinated pollutant model; the oxidation kinetics and mechanistic pathway were explored in the Co2+/peroxymonosulfate (PMS) system. Notably, a high removal efficiency (81.0%) but low mineralization rate (9.15%) of CA within 120 min were observed at pH 3.0 during Co2+/PMS treatment. Exogenic Cl− had a dual effect (inhibitory then promoting) on CA degradation. Several undesirable chlorinated by-products were formed in the Co2+/PMS system. This demonstrated endogenic chlorine and exogenic Cl− both reacted with SO4˙− to generate chlorine radicals, which participated in the dechlorination and rechlorination of CA and its by-products. Furthermore, SO4˙− was the dominant species responsible for CA degradation at low Cl− concentrations (≤1 mM), whereas Cl2˙− was the predominant radical at [Cl−]0 > 1 mM. A possible degradation pathway of CA was proposed. Our findings suggested that chlorinated compounds in highly saline pharmaceutical wastewater will be more resistant and deserve more attention.

Keywords: co2 pms; degradation; wastewater; clofibric acid

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.