LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Innovative approach to controlled Pt–Rh bimetallic nanoparticle synthesis

Photo from wikipedia

Precise control of the elemental composition and distribution in bimetallic nanoparticles is of great interest for both fundamental studies and applications, e.g. in catalysis. We present a new innovative and… Click to show full abstract

Precise control of the elemental composition and distribution in bimetallic nanoparticles is of great interest for both fundamental studies and applications, e.g. in catalysis. We present a new innovative and facile synthesis strategy for the production of true solid solution Pt1−xRhx nanoparticles. This constitutes a development of the established heat-up method, where undesired shell formation is fully suppressed, despite utilizing metal precursors with different reaction rates. The concept is demonstrated through synthesis of selected Pt1−xRhx solid solution compositions via the polyalcohol reduction approach. In addition, we provide modified procedures, using the same surface stabilizing agent/metal precursors reaction matrix yielding controlled model Rh(core)–Pt(shell) and Pt(core)–Rh(shell) nanoparticles. Tunable bimetallic solid solution and core–shell nanoparticles with the same capping agent are of key importance in systematic fundamental studies, as functional materials properties may be altered by modifying the surface termination.

Keywords: core shell; synthesis; shell; innovative approach; solid solution

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.