LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Experimental and theoretical insights into copper corrosion inhibition by protonated amino-acids

Photo from wikipedia

The effects of cysteine (Cys) and l-methionine (l-Met) on copper corrosion inhibition were examined in 1 M HNO3 solution for short and long exposure times. Potentiodynamic polarization (PDP) and electrochemical… Click to show full abstract

The effects of cysteine (Cys) and l-methionine (l-Met) on copper corrosion inhibition were examined in 1 M HNO3 solution for short and long exposure times. Potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) were used. The EIS determined the potential for zero charges of copper (PZC) in the inhibitor solution. SEM and AFM have been used to study material surfaces. Energy-dispersive X-ray spectroscopy (EDS) was used to identify surface elemental composition. DFT and molecular dynamics simulations explored the interaction between protonated amino acids and aggressive media anions on a copper (111) surface.

Keywords: amino acids; protonated amino; spectroscopy; corrosion inhibition; copper corrosion

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.