LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Strain coupling of ferroelastic domains and misfit dislocations in [101]-oriented ferroelectric PbTiO3 films

Photo by introspectivedsgn from unsplash

High-index perovskite ferroelectric thin films possess excellent dielectric permittivity, piezoelectric coefficient, and exotic ferroelectric switching properties. They also exhibit complications in the ferroelastic domains, misfit dislocations, and strain-relaxation behaviors. Exploring… Click to show full abstract

High-index perovskite ferroelectric thin films possess excellent dielectric permittivity, piezoelectric coefficient, and exotic ferroelectric switching properties. They also exhibit complications in the ferroelastic domains, misfit dislocations, and strain-relaxation behaviors. Exploring the relationship of the ferroelastic domains and misfit dislocations may be of benefit for promoting the high-quality growth of these thin films. Here, the strain field of the ferroelastic domains and misfit dislocations in [101]-oriented PbTiO3/(La, Sr)(Al, Ta)O3 epitaxial thin films were investigated by advanced aberration-corrected (scanning) transmission electron microscopy (TEM) combined with geometry phase analysis (GPA). Two types of misfit dislocations with projected Burgers vectors of a[001] or a[100] on the (010) plane were elucidated, whose strain fields included in-plane strain and lattice rotation coupled with the c domains above them. Besides, it was demonstrated that the coupling was kept inside the PbTiO3 films when the film thickness was increased. Furthermore, the polarization rotation was observed in both narrow c domains and around the misfit dislocation cores, which may be attributed to the flexoelectric effect. These results are expected to provide useful information for understanding the nucleation and propagation mechanism of ferroelastic domains and for further modifying the growth of high-index ferroelectric thin films.

Keywords: misfit dislocations; thin films; domains misfit; 101 oriented; ferroelastic domains; dislocations 101

Journal Title: RSC Advances
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.